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Abstract

We consider the geometric phase and quantum tunneling in the vicinity of
diabolic and exceptional points. We show that the geometric phase associated
with the degeneracy points is defined by the flux of complex magnetic
monopoles. In the limit of weak coupling, the leading contribution to the
real part of the geometric phase is given by the flux of the Dirac monopole
plus a quadrupole term, and the expansion of the imaginary part starts with
a dipole-like field. For a two-level system governed by a generic non-
Hermitian Hamiltonian, we derive a formula to compute the non-adiabatic,
complex, geometric phase by integrating over the complex Bloch sphere. We
apply our results to study a dissipative two-level system driven by a periodic
electromagnetic field and show that, in the vicinity of the exceptional point,
the complex geometric phase behaves like a step-function. Studying the
tunneling process near and at the exceptional point, we find two different
regimes: coherent and incoherent. The coherent regime is characterized by
Rabi oscillations, with a one-sheeted hyperbolic monopole emerging in this
region of the parameters. The two-sheeted hyperbolic monopole is associated
with the incoherent regime. We show that the dissipation results in a series of
pulses in the complex geometric phase which disappear when the dissipation
dies out. Such a strong coupling effect of the environment is beyond the
conventional adiabatic treatment of the Berry phase.

PACS numbers: 03.65.Vf, 14.80.Hv, 03.65.−w, 03.67.−a, 11.15.−q

1. Introduction

Recent experimental results providing evidence for the ‘magnetic’ monopole in the crystal-
momentum space [1] and the emergence of ‘fictitious magnetic monopoles’ in the anomalous
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Hall effect of ferromagnetic materials, magnetic superconductors, trapped �-type atoms,
anisotropic spin systems, noncommutative quantum mechanics, ferromagnetic spinor Bose–
Einstein condensates, etc [1–8] have caused a rebirth interest in the Dirac monopole problem.
The ‘fictitious’ monopoles appear in the context of the Berry phase as follows. Assume
that, for an adiabatically driven quantum system, the energy levels may cross. Then, in the
commonest case of double degeneracy with two linearly independent eigenvectors, the energy
surfaces form the sheets of a double cone. The apex of the cones is called a ‘diabolic point’
[9, 10]. Since, for a generic Hermitian Hamiltonian, the co-dimension of the diabolic point
is three, it can be characterized by three parameters: R = (X, Y,Z). The eigenstates, |n, R〉,
give rise to the Berry’s connection defined by An(R) = i〈n, R|∇R|n, R〉, and the curvature
Bn = ∇R × An associated with An is the field strength of ‘magnetic’ monopole located at
the diabolic point [9, 11]. The Berry phase, γn = ∮

C An · dR, is interpreted as a holonomy
associated with parallel transport along a circuit C [12].

Similar treatment of the non-Hermitian Hamiltonian is related to the complex extension
of the Berry phase, introduced for the first time by Garrison and Wright [13], and the
‘fictitious complex monopole’ located at the exceptional point [14]. Note that in contrast
to the diabolic point the exceptional point is characterized by a coalescence of eigenvalues
and their corresponding eigenvectors. Generally, the exceptional points are associated with
non-Hermitian physics and have been observed in various physical systems: laser-induced
ionization of atoms, microwave cavities, ‘crystals of light’, in optics of absorptive media,
electronic circuits, etc [15–25].

Since the Garrison and Wright paper was published, the geometric phase for quantum
systems governed by non-Hermitian Hamiltonians and complex-valued geometric phase
effects in dissipative systems were studied by various authors (for discussions and references
see, e.g., [11, 13, 15, 26–38]). However, the behavior of quantum systems in the neighborhood
of a degeneracy is still an open problem.

In this paper, we consider the geometric phase and tunneling process near and at the
diabolic and exceptional points. We show that for a general non-Hermitian system the
geometric phase associated with the degeneracy is described by a complex magnetic monopole.
We find that the exceptional point is the bifurcation point of the complex geometric phase
in parameter space, and the real part of the latter has a jump discontinuity at the exceptional
point. We show that the exceptional point is the critical point of the quantum mechanical
system, where the topological phase transition occurs in parameter space.

We found two distinct regimes in the tunneling process in the vicinity of the exceptional
point: coherent and incoherent. The coherent tunneling is characterized by Rabi oscillations,
also known as quantum echoes. We also show that the dissipation results in a series of pulses
in the real part of the geometric phase. Such strong coupling with the environment disappears
in the absence of dissipation.

The paper is organized as follows. In section 2, general results on the behavior of
the eigenvectors at diabolic and exceptional points are presented. In section 3, the complex
geometric phase and related ‘magnetic’ monopoles are discussed. In section 4, a non-adiabatic
generalization of the complex Berry phase is introduced and the quantum evolution in the
vicinity of the diabolic and exceptional points is studied. In section 5, the results and open
problems are discussed.

2. General results on behavior of the eigenvectors at diabolic and exceptional points

It is known that, in parameter space, a set of exceptional points defines a smooth surface
of co-dimension 2 for a symmetric/asymmetric complex matrix, co-dimension 1 for a real
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asymmetric matrix, and that exceptional points do not exist for a real, symmetric or Hermitian
matrix [39]. Let H(p) be a complex N × N matrix that is smoothly dependent on m and real
parameters pi , where i runs from 1 to m. We assume that the exceptional point occurs for
some value of parameters p = pc. If λk(p) are the eigenvalues of H(p), we denote by |ψk(p)〉
and 〈ψ̃k(p)| the corresponding right/left eigenvectors:

H |ψk〉 = λk|ψk〉, 〈ψ̃k|H = 〈ψ̃k|λk. (1)

For p �= pc, both systems of left and right eigenvectors form a bi-orthogonal basis [40]∑
k

|ψk〉〈ψ̃k|
〈ψ̃k|ψk〉

= 1, 〈ψ̃k|ψk′ 〉 = 0, k �= k′. (2)

At the exceptional point, the eigenvalues, say n and n + 1, coalesce: λn(pc) = λn+1(pc), and
the corresponding eigenvectors coincide (up to a complex phase) yielding a single eigenvector
|ψEP〉. Now, applying the second set of equations in (2) for k = n and k = n + 1 we find that,
at the degeneracy point, the normalization condition is violated:

〈ψ̃EP|ψEP〉 = 0. (3)

Since, at the exceptional point, both eigenvalues and eigenvectors merge, forming a Jordan
block, it is convenient to introduce an orthonormal basis of this invariant two-dimensional
subspace as

〈n|n〉 = 1, 〈n + 1|n + 1〉 = 1, 〈n|n + 1〉 = 0, (4)

where |n〉 �= |ψn〉 and |n + 1〉 �= |ψn+1〉.
Assuming that all other eigenstates are non-degenerate, we find that the set of vectors

{|χk〉, 〈χ̃k|}, where |χn〉 = |n〉, 〈χ̃n+1| = 〈n + 1|, and

|χk〉 = |ψk〉√
〈ψ̃k|ψk〉

, 〈χ̃k| = 〈ψ̃k|√
〈ψ̃k|ψk〉

, for k �= n, n + 1

form a biorthonormal basis. Using this basis, we expand an arbitrary vector ψ as

|ψ〉 =
∑

ck(p)|χk(p)〉 (5)

with the coefficients of expansion defined as ck = 〈χ̃k|ψ〉.
From the orthogonality condition, we can see that if |ψ(p)〉 → |ψEP〉 while p → pc, all

ck (k �= n, n + 1) vanish at the exceptional point. This implies [31]

lim
p→Xc

(c1, . . . , cN) = (0, . . . , cn(pc), cn+1(pc), 0, . . . , 0) . (6)

Now, let |ψ〉 be the eigenvector of H,

H |ψ(p)〉 = λ(p)|ψ(p)〉. (7)

Using the expansion (5), we may write

|ψ〉 = α|n〉 + β|n + 1〉 +
∑

k �=n,n+1

ck(p)|χk(p)〉. (8)

Inserting (8) into equation (7), we find that the coefficients α and β are found from the
two-dimensional eigenvalue problem(

λ0 + Z X − iY
X + iY λ0 − Z

) (
α±
β±

)
= λ±

(
α±
β±

)
, (9)
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where

λ0(p) = 1

2
(〈n|H |n〉 + 〈n + 1|H |n + 1〉), (10)

X(p) = 1

2
(〈n|H |n + 1〉 + 〈n + 1|H |n〉), (11)

Y (p) = i

2
(〈n|H |n + 1〉 − 〈n + 1|H |n〉), (12)

Z(p) = 1

2
(〈n|H |n〉 − 〈n + 1|H |n + 1〉). (13)

Solving the characteristic equation for (9), we obtain λ± = λ0 ±
√

X2 + Y 2 + Z2. Setting
R(p) = (X, Y,Z) and R =

√
X2 + Y 2 + Z2, we find that the eigenvalues coalescence at

the point R(pc) = 0. This yields the diabolic point if X(pc) = Y (pc) = Z(pc) = 0,
and the exceptional point otherwise. Thus, in the vicinity of the level crossing point the
N-dimensional problem can be described by the effective two-dimensional non-Hermitian
Hamiltonian Hef(p) = λ0(p)11+R(p)·σ. However, finding the corresponding two-dimensional
space for a general N-dimensional matrix family is a nontrivial problem [39, 41, 42].

3. Degeneracy, geometric phases and complex ‘magnetic’ monopoles

Following [13], let us consider the time-dependent Schrödinger equation and its adjoint
equation:

i
∂

∂t
|
(t)〉 = H(X(t))|
(t)〉, (14)

−i
∂

∂t
〈
̃(t)| = 〈
̃(t)|H(X(t)), (15)

where H is the non-Hermitian Hamiltonian.
Let 〈ψ̃n(X)| and |ψn(X)〉 be the left (right) eigenstates corresponding to the eigenvalue

En. Then, in the adiabatic approximation, the complex geometric phase is given by [13, 26, 27]

γn = i
∮

C

〈ψ̃n(X)|dψn(X)〉
〈ψ̃n(X)|ψn(X)〉 (16)

generalizing Berry’s result to the dissipative case. Further, we assume that the instantaneous
eigenvectors form a bi-orthonormal basis, 〈ψ̃m|ψn〉 = δmn. This can alter the geometric phase
(16) up to the topological contribution πn, n ∈ Z [43, 44].

For a non-Hermitian Hamiltonian, the validity of the adiabatic approximation is defined
by the following condition:∑

m�=n

∣∣∣∣ 〈ψ̃m|∂H/∂t |ψn(X)〉
(Em − En)2

∣∣∣∣ 
 1. (17)

This restriction is violated near the degeneracies related to any of the diabolic points or
exceptional points, where the eigenvalues coalesce.

Since the adiabatic approach cannot be applied in the neighborhood of a degeneracy, we
will consider the non-adiabatic generalization of Berry’s phase introduced by Aharonov and
Anandan [45] and extended by Garrison and Wright to the non-Hermitian systems as follows
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[13]. Let an adjoint pair {|
(t)〉, 〈
̃(t)|} be a solution of equations (14) and (15) satisfying
the following condition:

|
(T )〉 = exp(iϕ)|
(0)〉, (18)

〈
̃(T )| = exp(−iϕ)〈
̃(0)|, (19)

where ϕ is complex, and let {|χ(t)〉, 〈χ̃(t)|} be a modified adjoint pair such that

|χ(t)〉 = exp(if (t))|
(t)〉, (20)

〈χ̃ (t)| = exp(−if (t))〈
̃(t)|, (21)

where f (t) is any function satisfying f (t + T ) − f (t) = ϕ(t). The total phase ϕ calculated
for the time interval (0, T ) may be written as ϕ = γ + δ, where the ‘dynamical phase’ is given
by

δ = −
∫ T

0
〈χ̃ (t)|H |χ(t)〉 dt, (22)

and for the geometric phase γ one has

γ = i
∫ T

0
〈χ̃ (t)| ∂

∂t
χ(t)〉 dt. (23)

This yields the connection 1-form and the curvature 2-form as follows [46]:

A = i〈χ̃ |dχ〉, F = dA. (24)

Note that the real part of the geometric phase (23), in addition to the contribution of the usual
Berry phase, contains a contribution of environment. Its imaginary part changes the amplitude
of the density matrix and implies mixture of the initially pure states.

The geometric phase, γ , for an arbitrary quantum evolution can also be obtained from the
total phase, γt , by subtracting the dynamical phase, γd [36]:

γ = γt − γd, (25)

where

γt = arg〈
(0)|
(t)〉 and γd = −i
∫ t

0
〈
(t)| d

dt
|
(t)〉 dt. (26)

We adopt and generalize this definition of the geometric phase for non-Hermitian quantum
evolution as follows (see also [43]):

γ = i

2
ln

〈
̃(t)|
(0)〉
〈
̃(0)|
(t)〉 + i

∫ t

0
〈
̃(t)| d

dt
|
(t)〉 dt. (27)

As can be observed, (27) gives a gauge-invariant definition of the geometric phase with respect
to gauge transformations:

|
〉 → eiα|
〉, 〈
̃| → e−iα〈
̃|, α ∈ C. (28)

3.1. Two-level system and ‘magnetic’ monopoles

As has been mentioned before, in the vicinity of the degeneracy point, the behavior of the
N-dimensional system can be described by an effective two-dimensional quantum system. In
what follows, we consider in detail the complex geometric phase associated with the generic
non-Hermitian Hamiltonian:

H =
(

λ0 + Z X − iY
X + iY λ0 − Z

)
, X, Y,Z ∈ C, (29)

with X, Y,Z ∈ C being complex parameters.

5
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For the Hamiltonian (29), the exceptional point is determined by equation

X2 + Y 2 + Z2 = 0, (30)

and defines a hypersurface of complex codimension 1 in C
3, which can also be considered

as a smooth surface of codimension 2 in a six-dimensional real space. Note that the diabolic
point is just a point in a three-dimensional complex space C

3 and is located at the origin of
coordinates.

The solution to the eigenvalue problem

H |u〉 = λ|u〉, 〈ũ|H = λ〈ũ| (31)

where |u〉 and 〈ũ| are the right and left eigenvectors, respectively, is given by

λ± = λ0 ± R, (32)

where R = (X2 + Y 2 + Z2)
1/2

. The right and left eigenvectors are found to be

|u+〉 =
(

cos θ
2

eiϕ sin θ
2

)
, 〈ũ+| =

(
cos

θ

2
, e−iϕ sin

θ

2

)
(33)

|u−〉 =
(

−e−iϕ sin θ
2

cos θ
2

)
, 〈ũ−| =

(
−eiϕ sin

θ

2
, cos

θ

2

)
, (34)

where

cos
θ

2
=

√
R + Z

2R
, sin

θ

2
=

√
R − Z

2R
, (35)

eiϕ = X + iY√
R2 − Z2

, e−iϕ = X − iY√
R2 − Z2

, (36)

and θ, ϕ are the complex angles of the complex spherical coordinates:

X = R sin θ cos ϕ, Y = R sin θ sin ϕ, Z = R cos θ. (37)

Finally, for R �= 0, the following relationships hold:

〈ũ±|u∓〉 = 0, 〈ũ±|u±〉 = 1. (38)

As seen from equation (32), the coupling of eigenvalues λ+ and λ− occurs when
X2 + Y 2 + Z2 = 0. This implies the existence of two cases. The first one, defined by θ = 0,

ϕ = 0, yields two linearly independent eigenvectors. The point of coupling is known as the
diabolic point, and we obtain

|u+〉 =
(

1
0

)
, 〈ũ+| = (1, 0), |u−〉 =

(
0
1

)
, 〈ũ−| = (0, 1). (39)

The second case is characterized by the coupling of eigenvalues and the merging of the
eigenvectors. The degeneracy point is known as the exceptional point, and we have
|u+〉 = eiκ |u−〉 and 〈ũ+| = e−iκ〈ũ−|, where κ ∈ C is a complex phase. Hence, a violation of
the normalization condition (38) occurs at the exceptional point, and we have 〈ũ±|u±〉 = 0.

Let us assume that the exceptional point is given by R0 = (X0, Y0, Z0). Then, if Z0 �= 0,
using equations (35)–(37) we obtain

tan
θ0

2
= ±i, e2iϕ0 = X0 + iY0

X0 − iY0
(40)

6
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and, thus, at the exceptional point Im θ → ±∞. If Z0 = 0, we obtain X0 = ±iY0. This
implies θ0 = π/2, and Im ϕ → ±∞ at the exceptional point.

Inserting formulae (33)–(34) for |u±〉 and 〈ũ±| into (24), we obtain the connection 1-form:

A = q(1 − cos θ) dϕ, (41)

where q = ∓1/2 and upper/lower sign corresponds to |u±〉, respectively. The related
curvature 2-form reads

F = dA = q sin θdθ ∧ dϕ, θ, ϕ ∈ C (42)

and, in complex Cartesian coordinates, the connection 1-form and the curvature 2-form can
be written as

A = q(X dY − Y dX)

R(R + Z)
, (43)

F = q

R3
εijkX

k dXi ∧ dXj . (44)

The obtained formulae describe a complex ‘magnetic monopole’ with a charge q and the field
B = ∗F given by

B = q
R

R3
, (45)

where R = (X, Y,Z), and X, Y,Z ∈ C. The field of the monopole can be written as
Bi = −∂�/∂Xi , where the potential � = q/R.

The computation of the geometric phase yields

γ =
∮
C
A, (46)

where integration is performed over the contour C on the complex sphere S2
c . Applying Stokes’

theorem, we obtain

γ =
∫

�

F = q�(C), (47)

where � is a closed surface with a boundary C = ∂�, and �(C) is the complex solid angle
subtended by the contour C.

Generally, the complex magnetic monopole emerges in quantum mechanical systems
with SL(2, C) symmetry. In the particular case of SO(3) symmetry, the related degeneracy
is referred to as the diabolic point, and formula (45) reproduces the classical Berry result
of a two-fold degeneracy in parameter space [9]. For the exceptional point the field of the
corresponding ‘monopole’ represents a complicated topological charge rather than a point-
like magnetic charge. In what follows, we discuss two particular applications: hyperbolic
monopole and complex Dirac monopole.

3.1.1. Hyperbolic monopole. Let us consider the following non-Hermitian Hamiltonian:

H =
(

λ0 + iz x − iy
x + iy λ0 − iz

)
, x, y, z ∈ R. (48)

The eigenvalues of the Hamiltonian given by λ± = λ0 ± R, where R = (x2 + y2 − z2)
1/2

,
coalesce at the point R = 0. In addition, the exceptional point is represented by a double cone
with its apex at the origin, and the diabolic point is also located at the origin.

7
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Applying (43)–(44), we obtain

A = q(x dy − y dx)

R(R + iz)
and F = iq

R3
εijkx

k dxi ∧ dxj . (49)

This yields

B = iq
R

R3
, R = (x, y, z). (50)

Hence, the field B can be written as = −∇�, where � = −iq/R.
For R2 > 0, the surface defined by R = const is a one-sheeted hyperboloid, which can

also be considered as the coset class SU(1, 1)/R ∼ SO(2, 1)/SO(1, 1) [47, 48]. Introducing
the inner coordinates (θ, ϕ) as

x = R cosh θ cos ϕ, y = R cosh θ sin ϕ, z = R sinh θ, (51)

where −∞ � θ � ∞, 0 � ϕ < 2π , we obtain

A = q(1 − i sinh θ) dϕ, F = −iq cosh θdθ ∧ dϕ. (52)

The resultant one-sheeted hyperbolic monopole carries an imaginary total charge iq and, in
contrast to the point-like Dirac monopole, has a singularity on the surface of the double cone
identified with the exceptional point.

For R2 < 0, the surface characterized by z2−x2−y2 = const is a two-sheeted hyperboloid.
A convenient parametrization is given by

x = R̃ sinh θ cos ϕ, y = R̃ sinh θ sin ϕ, z = R̃ cosh θ (z > 0) (53)

x = R̃ sinh θ cos ϕ, y = R̃ sinh θ sin ϕ, z = −R̃ cosh θ (z < 0) (54)

where 0 � θ � ∞, 0 � ϕ < 2π, R̃ = (z2 − x2 − y2)1/2, and we preserve the same
notation for the angular coordinates, as above. The relevant coset class is SU(1, 1)/U(1) ∼
SO(2, 1)/SO(2), and referring to (49) and (50), we obtain

A+ = q(1 − cosh θ) dϕ, F + = −q sinh θdθ ∧ dϕ (z > 0), (55)

A− = q(1 + cosh θ) dϕ, F− = q sinh θdθ ∧ dϕ (z < 0). (56)

Hence, the monopole carries a real total charge given by −q. Note that the two-sheeted
hyperbolic monopole has already appeared in the literature in connection with the geometric
phase (see, e.g., [47–49]). Moreover, as has been pointed out by Jackiw [48], this is a
topologically trivial case, and the curvature may be removed by a globally well-defined
canonical transformation.

It can easily be shown that, in the case of a one-sheeted monopole, the corresponding
potential � is imaginary and, for a two-sheeted hyperbolic monopole, � is a real function.
In figure 1, the surfaces of Im � = const and Re � = const related to the one-sheeted and
two-sheeted hyperbolic monopole, respectively, are depicted.

The hyperbolic monopoles appear in a wide class of physical systems with SO(2, 1)

invariance (for discussion see, e.g., [47–51] and references therein). For instance, the
hyperbolic monopole emerges in a two-level atom interacting with an electromagnetic field
(see section 4.1.3).

8
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Figure 1. Hyperbolic monopole. Left panel: R2 > 0, one-sheeted hyperbolic monopole. The
surfaces Im � = const are depicted. Right panel: R2 < 0, two-sheeted hyperbolic monopole. The
surfaces Re � = const are presented. The exceptional point is realized as the double-cone (not
plotted).

3.1.2. Complex Dirac monopole. Let us consider the non-Hermitian Hamiltonian written as

H =
(

λ0 + z − iε x − iy
x + iy λ0 − z + iε

)
, x, y, z ∈ R. (57)

The computation of the ‘magnetic’ field B yields

B = qR

R3
, R = (x, y, z − iε) (58)

where R = (x2 + y2 + z2 − ε2 − 2iεz)1/2. The exceptional point obtained as the solution of
equation

x2 + y2 + z2 − ε2 + 2iεz = 0 (59)

is the circle of the radius ε at the plane z = 0.
The field of the monopole, B = −∇�, is defined by the complex potential � = q/R,

depicted in figure 2. Setting r = (x2 + y2 + z2)1/2 and using the real spherical coordinates
(r, α, β), we have R = (r2 − 2iεr cos α − ε2)1/2. Then, we may expand the potential � as
follows:

� = q√
r2 − 2iεr cos α − ε2

= q

∞∑
l=0

(iε)l

rl+1
Pl(cos α). (60)

For r � ε, this yields

� = q

r
+ i

p cos α

r2
− Q(3 cos2 α − 1)

2r3
+ · · · , (61)

where q is the monopole charge, p = qε is the dipole moment, and Q = qε2 is the quadrupole
moment.

The geometric phase of the ground state is found to be

γ = q

∮
C

(
1 − r cos α − iε√

r2 − 2iεr cos α − ε2

)
dβ. (62)

9
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Figure 2. Complex Dirac monopole. The surfaces Re � = const (left) and Im � = const (right)
are plotted. The exceptional point is depicted by a circle of radius r = 1(ε = 1).

Using a multipole expansion (61), we obtain the following expression for γ :

γ = γM + i
∮
C

p sin2 α

r
dβ −

∮
C

3Q sin2 α cos α

2r2
dβ + · · · , (63)

where γM = q
∮
C(1 − cos α) dβ is the contribution of the Dirac monopole at the origin, the

second term describes the dipole contribution to the imaginary part of the geometric phase
and the third term is the quadrupole contribution to its real part.

Let us consider the closed curve C parameterized by β with complex angle θ = const.
Then for q = 1/2 the geometric phase (62) becomes

γ = π

(
1 − z − iε√

ρ2 + (z − iε)2

)
, (64)

where ρ = (x2 + y2)1/2.
A complex Dirac monopole and related complex Berry’s phase appear in a wide class of

open systems, where the Hamiltonian

H̃ = B(t) · σ − i

2
�†�

includes spontaneous decay � = √
εσ− as a source of decoherence (see, e.g., [37] and

references therein). For instance, it emerges in a two-level atom driven by a periodic
electromagnetic field E(t) = Re(E(t) exp(iνt)), with E(t) being slowly varied, as follows.
In the rotating wave approximation, after removing the explicit time dependence of the
Hamiltonian with a suitable non-unitary transformation, the Schrödinger equation reads [13]

i

(
u̇1

u̇2

)
= 1

2

(
� − i

2γa 2V ∗

2V −� − i
2γb

) (
u1

u2

)
, (65)

where γa, γb are decay rates for the upper and lower levels, respectively, � = ω0 − ν, ω0 =
(Ea − Eb), V = μ · E and μ is the dipole matrix element. To compare the geometric

10
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Table 1. Monopole structure of the two-level dissipative system.

Monopole classification
Dirac monopole ε = 0
Complex monopole ε �= 0
Complex Dirac monopole ε �= 0, ε = const
One-sheeted hyperbolic monopole ε �= 0, z = 0, x2 + y2 − ε2 > 0
Two-sheeted hyperbolic monopole ε �= 0, z = 0, x2 + y2 − ε2 < 0

phase (64) with that found in [13], we set x = Re V (t), y = Im V (t), z = �/2 and
ε = δ/2 = (γa − γb)/4. Then, the geometric phase (64) can be written as

γ = π

(
1 − � − iδ√

|2V0|2 + (� − iδ)2

)
(66)

which coincides with the result obtained by Garrison and Wright [13] .

3.1.3. Remark. Comparing (92) with equations (48) and (57), we conclude that both the
complex Dirac monopole and the hyperbolic monopole can be realized in the four-dimensional
parameter space x, y, z, ε ∈ R

4. A brief classification of the monopole structure is given in
table 1.

4. Geometric phase and quantum evolution in the vicinity of diabolic and exceptional

points

Since the adiabatic approach cannot be applied in the neighborhood of a degeneracy, we here
consider a non-adiabatic generalization of the complex Berry phase. Let |u(t)〉 and 〈ũ(t)| be
solutions of the Schrödinger equation and its adjoint equation:

i
∂

∂t
|u(t)〉 = H |u(t)〉, (67)

−i
∂

∂t
〈ũ(t)| = 〈̃u(t)|H, (68)

where we assume, as usual, the normalization condition 〈ũ(t)|u(t)〉 = 1. For an arbitrary
evolution of a non-Hermitian quantum system, the complex geometric phase γ = γt − γd is
given by equation (27), and we have

γ = i

2
ln

〈ũ(t)|u(0)〉
〈ũ(0)|u(t)〉 + i

∫ t

0
〈ũ(t)|u̇(t)〉 dt. (69)

This result can be adopted to calculate the geometric phase over the complex Bloch sphere
as follows. Let n(t) = (sin α cos β, sin α sin β, cos α) be a unit complex Bloch vector defined
as n(t) = 〈ũ(t)|σ|u(t)〉. The Bloch vector satisfies the following equation:

dn/dt = Ω × n, Ω(t) = Tr(H(t)σ) (70)

and, as shown in the appendix, the complex geometric phase can be written as

γ = −1

2

∫ τ

0
(1 − cos α)β̇ dt + arctan

sin(βf − βi)

cot(αf /2) cot(αi/2) + cos(βf − βi)
. (71)

11
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The integration is performed along the unique curve n(t) on the unit sphere S2
c , joining the

initial point n(0) = ni = (sin αi cos βi, sin αi sin βi, cos αi) and the final point n(τ ) = nf =
(sin αf cos βf , sin αf sin βf , cos αf ).

Under a cyclic quantum evolution with period T, the Bloch vector describes a closed curve
C on the complex two-dimensional sphere S2

c , and n(t + T ) = n(t). The associated complex
geometric phase, being half of the complex solid angle enclosed by C,

γ = −1

2

∮
(1 − cos α) dβ = −1

2
�(C), (72)

is known as the complex Aharonov–Anandan phase [13, 52].
Consider a generic non-Hermitian Hamiltonian

H = λ0

2
11 +

1

2
Ω · σ, (73)

where 11 denotes the identity operator. Let |ui〉 be a given initial state, then the solution of the
Schrödinger equation (71) can be written as |u(t)〉 = U(t)|ui〉 and 〈ũ(t) = 〈ũi |U−1(t), where

U(t) =
(

cos
�t

2
− i sin

�t

2
Ω̂ · σ

)
e−iλ0t/2 (74)

U−1(t) =
(

cos
�t

2
+ i sin

�t

2
Ω̂ · σ

)
eiλ0t/2, (75)

with Ω̂ being the complex unit vector and � = (Ω ·Ω)1/2.
Let |ui〉 and |uf 〉 = |u(t)〉 be the initial and final states, respectively. Denoting the

associated adjoint states by 〈ũi | and 〈ũf |, we compute the transition amplitude |ui〉 → |ui〉
and |ui〉 → |uf 〉 as

Tii = 〈ũi |U(t)|ui〉 =
(

cos
�t

2
− i sin

�t

2
ni · Ω̂

)
e−iλ0t/2 (76)

Tf i = 〈ũf |U(t)|ui〉 =
(

cos θf i cos
�t

2
− i sin

�t

2
nf i · Ω̂

)
e−iλ0t/2, (77)

where cos θf i = 〈ũf |ui〉, ni = 〈ũi |σ|ui〉 and nf i = 〈ũf |σ|ui〉.
The computation of the time-dependent Bloch vector results in

n(t) = cos �tni + cos χ(1 − cos �t)Ω̂ + sin �t(Ω̂ × ni ), (78)

where χ is the angle between the vectors ni and Ω̂ such that cos χ = ni · Ω̂.
Of special interest is the case where Im(Ω ·Ω) = 0. From �0 = (|Ω ·Ω|)1/2, we obtain

n(t) = cos �0tni + cos χ0(1 − cos �0t)
Ω
�0

+
sin �0t

�0
(Ω̂ × ni ), if Ω ·Ω > 0 (79)

n(t) = cosh �0tni − cos χ0(1 − cosh �0t)
Ω
�0

+
sinh �0t

�0
(Ω̂ × ni ), if Ω ·Ω < 0 (80)

where cos χ0 = ni ·Ω/�0. At the exceptional point given by � = 0 and Ω = Ωe, both
regimes yield

n(t) = ni − t (ni × Ωe) +
t2

2
(ni · Ωe)Ωe. (81)

12
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A similar consideration of the transition amplitude yields

Tii =
(

cos
�t

2
− i sin

�t

2
ni · Ω

�0

)
e−iλ0t/2

Tf i =
(

cos θf i cos
�t

2
− i sin

�t

2
nf i · Ω

�0

)
e−iλ0t/2

⎫⎪⎪⎬⎪⎪⎭ if Ω ·Ω > 0 (82)

and

Tii =
(

cosh
�t

2
− i sinh

�t

2
ni · Ω

�0

)
e−iλ0t/2

Tf i =
(

cos θf i cosh
�t

2
− i sinh

�t

2
nf i · Ω

�0

)
e−iλ0t/2

⎫⎪⎪⎬⎪⎪⎭ if Ω ·Ω < 0. (83)

Thus, if Ω ·Ω > 0 we obtain coherent evolution of the quantum-mechanical system, and if
Ω ·Ω < 0 we have an incoherent one. At the exceptional point both regimes yield

Tii =
(

1 − i
t

2
ni ·Ωe

)
e−iλ0t/2 (84)

Tf i =
(

cos θf i − i
t

2
nf i · Ωe

)
e−iλ0t/2. (85)

The complex geometric phase can be derived from formula (69) or equivalently, using (71).
Employing (69), we obtain the time-dependent geometric phase

γ (t) = �t

2
cos χ +

i

2
ln

1 + i cos χ tan �t
2

1 − i cos χ tan �t
2

. (86)

In the vicinity of the exceptional point, we have

γ (t) = ni ·Ωe

t

2
+

i

2
ln

1 + ini ·Ωe
t
2

1 − ini ·Ωe
t
2

+ O(�2). (87)

It follows from here that the real part of the geometric phase Re γ (t) behaves like a step-
function at the point t0 = 2/|Im(ni ·Ωe)| (see figures 3 and 4). In particular, we obtain

Re γ (t0) = lim
Re(ni ·Ωe)→0

lim
t→t0

Re γ (t) =
⎧⎨⎩

0, Re(ni ·Ωe) → 0, t → t0 − 0
−π/2, Re(ni ·Ωe) → +0, t → t0 + 0
π/2, Re(ni ·Ωe) → −0, t → t0 + 0.

(88)

4.1. Two-level atom driven by a periodic electromagnetic field

As an illustrative example we consider a two-level dissipative system driven by a periodic
electromagnetic field E(t) = Re(E(t) exp(iνt)). In the rotating wave approximation, after
removing the explicit time dependence of the Hamiltonian and the average effect of the decay
terms, the Schrödinger equation reads [13, 53]

i

(
u̇1

u̇2

)
= 1

2

(−iλ + � − iδ 2V ∗

2V −iλ − � + iδ

) (
u1

u2

)
, (89)

where λ = (γa + γb)/2 with γa, γb being decay rates for upper and lower levels, respectively,
� = ω0 −ν, ω0 = (Ea −Eb), δ = (γa −γb)/2, V = μ · E and μ is the dipole matrix element.

13
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(a) (b)

Figure 3. Left panel: the real part of the geometric phase Re γ versus a = Re(ni · �e) and t
(Re(ni · �e) = 1). Right panel: Re γ versus b = Im(ni · �e) and t (Re(ni · �e) = 0).

Figure 4. The graphic of Re γ as function of a = Re(ni ·�e) and b = Im(ni · �e) (t = 2).

The choice E(t) = E0 exp(iωt) yields V (t) = V0 exp(iωt), where V0 = μ · E0, and we
further assume that V0 > 0. The solution of equation (89) with this choice of E is well known
and can be written as

|u(t)〉 = C1(t) e−i(ω−iλ)t/2|u↑〉 + C2(t) ei(ω+iλ)t/2|u↓〉, (90)

where |u↑〉 = (
1
0

)
and |u↓〉 = (

0
1

)
denote the up/down states, respectively. In addition, |C(t)〉

satisfies the Schrödinger equation

i
∂|C〉
∂t

= Hr |C〉 (91)

written in a co-rotating reference frame, where the Hamiltonian of the system takes the form

Hr = 1

2

(
� − ω − iδ 2V0

2V0 −� + ω + iδ

)
(92)

14
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and we find(
C1(t)

C2(t)

)
=

(
cos(�t/2) − i cos χ sin(�t/2) −i sin χ sin(�t/2)

−i sin χ sin(�t/2) cos(�t/2) + i cos χ sin(�t/2)

)(
C1(0)

C2(0)

)
,

(93)

where cos χ = (� − ω − iδ)/�,� = (ρ2 + (� − ω − iδ)2)1/2, ρ = 2V0.
Passing on to the Bloch vector n(t) = 〈ũ(t)|σ|u(t)〉 we obtain

n(t) =
⎛⎝cos ωt −sin ωt 0

sin ωt cos ωt 0
0 0 1

⎞⎠
×

⎛⎝sin2 χ + cos2 χ cos �t −cos χ sin �t 1
2 sin 2χ(1 − cos �t)

cos χ sin �t cos �t −sin χ sin �t
1
2 sin 2χ(1 − cos �t) sin χ sin �t cos2 χ + sin2 χ cos �t

⎞⎠ n(0) . (94)

Finally, one can show that n(t) satisfies the following equation:

dn/dt = Ω′(t) × n (95)

where Ω′ = (ρ cos ωt, ρ sin ωt,� − iδ).

4.1.1. Cyclic evolution. Let n(t + T ) = n(t) be the Bloch vector yielding a cyclic evolution
of the system over the complex sphere S2

c with a period T = 2π/ω. Starting with the definition
n = 〈ũ(t)|σ|u(t)〉, where |u(t)〉 and 〈ũ(t)| satisfy the Schrödinger equation (89) and its adjoint
equation, respectively, we find that the solution

|u+(t)〉 = cos
χ

2
e−i(ω+�−iλ)t/2|u↑〉 + sin

χ

2
ei(ω−�+iλ)t/2|u↓〉 (96)

〈ũ+(t)| = cos
χ

2
ei(ω+�−iλ)t/2〈u↑| + sin

χ

2
e−i(ω−�+iλ)t/2〈u↓| (97)

yields

n+ = (sin χ cos ωt, sin χ sin ωt, cos χ). (98)

Note that n+(t) can be obtained as the periodic solution of the Bloch equation with
Ω = �(sin χ, 0, cos χ). The other periodic solution is given by

n− = −(sin χ cos ωt, sin χ sin ωt, cos χ) (99)

and the related solution of the Schrödinger equation reads

|u−(t)〉 = −sin
χ

2
e−i(ω+�−iλ)t/2|u↑〉 + cos

χ

2
ei(ω−�+iλ)t/2|u↓〉 (100)

〈ũ−(t)| = −sin
χ

2
ei(ω+�−iλ)t/2〈u↑| + cos

χ

2
e−i(ω−�+iλ)t/2〈u↓|. (101)

The geometric phase derived from (72) is given by

γ± = −π

(
1 ∓ � − ω − iδ√

ρ2 + (� − ω − iδ)2

)
. (102)

In the adiabatic limit, |ω/(�− iδ)| 
 1, the complex Aharonov–Anandan phase γ = γ− + 2π

reduces to the complex Berry phase γad obtained in [13]:

γad = π

(
1 − � − iδ√

(2V0)2 + (� − iδ)2

)
. (103)
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ρ ρ

Figure 5. Left panel: the real part of the geometric phase, Re γ versus ρ and z = � − ω, in the
vicinity of the diabolic point given by ρ = z = 0 (δ = 0). Right panel: Re γ versus ρ and z

nearby the exceptional point defined by ρ = δ and z = 0 (δ = 0.25).

In what follows, we consider the behavior of the geometric phase γ near the critical
points, starting with the diabolic point. In this case, Im γ = 0 and we have

γ = π

(
1 − � − ω√

ρ2 + (� − ω)2

)
. (104)

This yields

γ =
{

0, for ρ = 0, � − ω > 0

2π, for ρ = 0, � − ω < 0
(105)

It follows that the geometric phase behaves like a step-function near the diabolic point, and
that at the diabolic point γ has a jump discontinuity with a gap of 2π (figure 5).

Referring to (102), we find that near the exceptional point, and for � = ω, the real part
of the geometric phase is given by

Re γ =

⎧⎪⎨⎪⎩
π, if ρ > δ

π

(
1 ± δ√

δ2 − ρ2

)
, if ρ < δ,

(106)

where the upper/lower sign corresponds to � − ω → ±0. A similar consideration of the
imaginary part of the geometric phase yields

Im γ =

⎧⎪⎨⎪⎩
0, if ρ < δ

πδ√
ρ2 − δ2

, if ρ > δ.
(107)

In figure 5, one can see that the geometric phase has an infinite gap at the exceptional point.
This is due to the coalescence of eigenvectors at the exceptional point.
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ρ ρ

Figure 6. Left panel: the imaginary part of the geometric phase, Im γ as function of ρ and z =
� − ω (t = 2/δ, δ = 0.5, ω = 1). Right panel: Im γ versus ρ (z = 0, t = 2/δ, δ = 0.5, ω = 1).
The divergence of Im γ can be observed at the exceptional point (ρ = δ = 0.5, z = 0).

4.1.2. Non-cyclic evolution. Let us consider the case in which the initial state is
|u(0)〉 = |u↑〉, which corresponds to the north pole of the Bloch sphere S2

c , and, hence,
n(0) = (0, 0, 1). For non-cyclic evolution and an initial state chosen as ni = (0, 0, 1), the
explicit form of the time-dependent solution of equation (70) is given by

n(t) =

⎛⎜⎝sin χ cos χ(1 − cos �t) cos ωt + sin χ sin �t sin ωt

sin χ cos χ(1 − cos �t) sin ωt − sin χ sin �t cos ωt

cos2 χ + sin2 χ cos �t

⎞⎟⎠ . (108)

The geometric phase derived from (71) is given by

γ = �t

2
cos χ − ω sin2 χ

2�
(�t − sin �t) +

i

2
ln

1 + i cos χ tan �t
2

1 − i cos χ tan �t
2

, (109)

where � = (ρ2 + (� − ω − iδ)2)1/2. As depicted in figures 6 and 7, the geometric phase
has a singular behavior in the vicinity of the exceptional point. At the exceptional point, the
imaginary part of the geometric phase diverges, and its real part behaves like a step-function.

In the vicinity of the degeneracy point defined by � = 0,

γ = Zt

2
− ωρ2t3

6
+

i

2
ln

1 + iZt
2

(
1 + 1

3

(
�t
2

)2)
1 − iZt

2

(
1 + 1

3

(
�t
2

)2) + O(�4), (110)

where Z = �−ω− iδ. If t �= 2/δ, it follows that, at the exceptional point defined by Z = −iδ
and ρ = δ, the geometric phase is given by

γ = −ωδ2t3

6
− i

δt

2
+

i

2
ln

1 + δt
2

1 − δt
2

. (111)
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ρ
ρ

Figure 7. Left panel: the real part of the geometric phase, Re γ , versus ρ and z = � − ω

(t = 2/δ = 0.5, δ = 0.5, ω = 1). Right panel: the same graphic nearby the exceptional point
defined by ρ = δ and z = 0.

z

Figure 8. Left panel: graphic of Re γ versus z = � − ω depicted for t = 2/δ and ρ = δ

(δ = 0.5, ω = 1). At the exceptional point, defined by ρ = δ and z = 0, the jump discontinuity is
given by �Re γ = ±π/4. Right panel: Re γ versus ρ (t = 2/δ, z = 0, δ = 0.5, ω = 1). At the
exceptional point, �Re γ = ±π/2.

The case of t = 2/δ requires more careful analysis. Assuming t = 2/δ and inserting
ρ = δ into equation (110), we obtain

γ = ±π

4
− 4ω

3δ
+

� − ω

δ
− i

2
ln

e2|� − ω|
2δ + i(� − ω)

+ O(�4), (112)

where the upper/lower sign corresponds to ρ − δ → ±0. At the exceptional point we have
(figure 8, left panel),

Re γ = ±π

4
− 4ω

3δ
. (113)
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Similarly, assuming � − ω = 0, we obtain

γ = ±π

2
− 4ωρ2

3δ3
− i

2
ln

|ρ2 − δ2|e2

ρ2 + 5δ2
+ O(�4), (114)

where the upper/lower sign corresponds to � − ω → ±0. At the exceptional point, (figure 8,
right panel),

Re γ = ±π

2
− 4ω

3δ
. (115)

4.1.3. Quantum evolution in the vicinity of degeneracy. To study the tunneling process near
a degeneracy, we assume that |u(t)〉 is a solution of equation (89) with the initial state at t = 0
chosen to be |u↑〉, and the final state of the system at a later time t to be |u↑〉 or |u↓〉. Then
following [20], we compute the probability P↑↑(P↓↑) that the system is in the state |u↑〉 (|u↓〉),
respectively, as

P↑↑ = |cos(�t/2) − i cos χ sin(�t/2)|2 e−λt (116)

P↓↑ = |sin χ sin(�t/2)|2 e−λt . (117)

In what follows, we restrict ourselves to the case ω = �. Then, according to the
classification of table 1, a fictitious hyperbolic monopole emerges in the parameter space R

3

defined by the parameters of the system Re V0, Im V0, δ ∈ R
3.

There are two different regimes dependent on the relation between ρ and δ. For ρ > δ

we have one-sheeted hyperbolic monopole and coherent tunneling process

P↑↑ = e−λt

(
cos

�0t

2
− δ

�0
sin

�0t

2

)2

, (118)

P↓↑ = e−λt ρ2

�2
0

sin2 �0t

2
, (119)

where �0 = |ρ2 − δ2|1/2 denotes the Rabi frequency.
On the other hand, for ρ < δ, there is incoherent tunneling

P↑↑ = e−λt

(
cosh

�0t

2
− δ

�0
sinh

�0t

2

)2

, (120)

P↓↑ = e−λt ρ2

�2
0

sinh2 �0t

2
(121)

and the associated monopole is the two-sheeted hyperbolic monopole. At the exceptional
point, �0 = 0, and both regimes yield

P↑↑ =
(

1 − δt

2

)2

e−λt and P↓↑ =
(

δt

2

)2

e−λt . (122)

The Rabi oscillations are manifested in the quantum oscillation between the up and down
states and can be characterized by the following function: P(t) = P↑↑ − P↓↑ [54]. The
computation yields

P(t) = e−λt

(
cos(�0t) − δ

�0
sin(�0t)

)
, if ρ > δ (123)
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Figure 9. Left panel: the Rabi oscillation P(t) as a function of t for coherent tunneling
(ρ > δ, �0 = 0.025, δ = 0.1, λ = 0.125). It is manifested as the quantum oscillation between
the up and down states, |u↑〉 and |u↓〉. Right panel: P(t) versus t for incoherent tunneling
(ρ < δ,�0 = 2, δ = 0.1, λ = 0.125).

P(t) = e−λt

(
cosh(�0t) − δ

�0
sinh(�0t)

)
, if ρ < δ (124)

and at the exceptional point

P(t) = e−λt

(
1 − δt

2

)
. (125)

The Rabi oscillation function P(t) is plotted in figure 9. In addition, it is simple to show that
in the absence of dissipation P(t) = cos(�0t).

Returning our attention to the geometric phase defined by equation (109), we obtain

γ = ω
(
δ2 + �2

0

)
2�3

0

(sin �0t − �0t) − i
δt

2
+

i

2
ln

�0 + δ tan �0t

2

�0 − δ tan �0t

2

, if ρ > δ (126)

and

γ = ω
(
δ2 + �2

0

)
2�3

0

(sinh �0t − �0t) − i
δt

2
+

i

2
ln

�0 + δ tanh �0t

2

�0 − δ tanh �0t

2

, if ρ < δ. (127)

It follows from equation (126) that the real part of the geometric phase Re γ (t) has the
jump discontinuity � Re γ = ∓π/2 at the points

tn = 2

�0

(
πn ± arctan

�0

δ

)
, n = 0, 1, . . . (128)

with the pulse duration given by

�t = 2π

�0

(
1 − 2

π
arctan

�0

δ

)
. (129)

For the incoherent tunneling defined by equation (127), the jump discontinuity � Re γ =
−π/2 occurs at the point

t0 = 2

�0
tanh−1

(
�0

δ

)
. (130)
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Figure 10. The real part of the geometric phase Re γ (τ) versus time τ = 2πt/ω. Left panel
(one-sheeted hyperbolic monopole): coherent tunneling (�0 = 2, δ = 0.5, ω = 1). Right panel
(two-sheeted hyperbolic monopole): incoherent tunneling (�0 = 0.25, δ = 0.5, ω = 1).

γ

ρ

τ

γ

ρ

τ

Figure 11. Hyperbolic monopole. The real part of the geometric phase Re γ (τ) versus time
τ = 2πt/ω and ρ is depicted. Left panel: dissipative system δ �= 0 (δ = 0.5, ω = 1). Right
panel: Re γ (τ) is plotted in the absence of dissipation (δ = 0, ω = 1). As can be seen from the
plot, the pulses presented at the left have disappeared.

At the exceptional point, �0 = 0, we have t0 = 2/δ and the pulse duration �t → ∞. In
the absence of dissipation (δ = 0) the pulses disappear. Indeed, in the limit t0 = 2/δ → ∞,
and in addition, the pulse duration �t → 0 while δt → 0. The real part of the non-adiabatic
geometric phase, Re γ (τ), as a function of the time τ = 2πt/ω is plotted in figure 10, and in
figure 11 the real part of the geometric phase Re γ (τ, ρ) versus τ and ρ is depicted.

To conclude, we note that the transition at the exceptional ρ = δ between two tunneling
regimes is the topological phase transition in parameter space, which can be described by a
two-sheeted hyperbolic monopole (ρ < δ) ↔ one-sheeted hyperbolic monopole (ρ > δ).
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5. Conclusion

In this paper, we considered the geometric phase and quantum tunneling in the vicinity of
diabolic and exceptional points. We demonstrated that the complex geometric phase associated
with the degeneracy points is defined by the flux of the complex fictitious ‘magnetic’ monopole.
In the weak-coupling limit, the leading contribution to the real part of the geometric phase
is given by the flux of the Dirac monopole plus a quadrupole term, and the expansion of the
imaginary part starts with a dipole-like field. Recently, a similar result was obtained for a
two-level spin-half system in a slowly varying magnetic field, weakly coupled to a dissipative
environment [55].

We found that the real part of the complex geometric phase has a discontinuity at the
exceptional point. We have also shown that the exceptional point is the critical point of the
quantum mechanical system, and a topological phase transition occurs at the exceptional point.

We identified two different regimes when studying the tunneling process near and at the
exceptional point: coherent and incoherent. Coherent tunneling is characterized by Rabi
oscillations, also known as quantum echoes, and it has been shown that the dissipation results
in pulses in the real part of the geometric phase. At the exceptional point, both tunneling
regimes exhibit a quadratic dependence in time that is in accordance with the results obtained
in [56, 57] for some specific non-Hermitian systems. The decay behavior predicted by
equations (118)–(122) has recently been observed in experiments with a dissipative microwave
billiard [57].

The emergence of pulses in the geometric phase is a novel quantum phenomenon, which
reflects the monopole structure of the system. This complex-valued phase effect may be
detected using quantal dissipative interferometry [58, 59]. Note that such strong coupling with
the environment should take place in generic dissipative systems, since in the neighborhood
of the exceptional point only terms related to the invariant subspace formed by the two-
dimensional Jordan block make substantial contributions, which makes the N-dimensional
problem become effectively two-dimensional [39, 41]. We conclude by remarking that
the obtained results could be important in the implementation of fault-tolerant quantum
computation, but it would be necessary to better understand the relation between geometric
phase and decoherence to perform this computation [60, 61].
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Appendix. Geometric phase for general evolution on the complex Bloch sphere

In this appendix, we derive from the general definition of the geometric phase (27) written for
two-level system as

γ (τ) = i

2
ln

( 〈ũ(τ )|u(0)〉
〈ũ(0)|u(t)〉

)
+ i

∫ τ

0
〈ũ(t)| d

dt
|u(t)〉 dt (A.1)

formula (71) for the computation of the geometric phase in terms of the complex Bloch vector.
Equation (A.3) generalizes to a non-Hermitian Hamiltonian the formula obtained by Zang and
Wang for the computation of the nonadiabatic noncyclic geometric phase for the Hermitian
two-level system [62].
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Theorem. The complex geometric phase defined in equation (A.1) is given on the complex
Bloch sphere S2

c by

γ (τ) = −1

2

∫ τ

0

n1ṅ2 − n2ṅ1

1 + n3
dt + arctan

(
sin(βf − βi)

cot(αf /2) cot(αi/2) + cos(βf − βi)

)
, (A.2)

where integration is performed along the unique curve n(t) on the unit sphere S2
c , joining

the initial point n(0) = (sin αi cos βi, sin αi sin βi, cos αi) and the final point n(τ ) =
(sin αf cos βf , sin αf sin βf , cos αf ).

Proof. In the general form, for a two-level system in terms of column and row vectors we
have

|u(t)〉 =
(

a(t)

b(t)

)
, 〈ũ(t)| = (ã(t), b̃(t)). (A.3)

After some algebra and using the definition of the Bloch vector n(t) = 〈
̃(t)|σ|
(t)〉, we
find

n1(t) = ab̃ + ãb, n2(t) = i(ab̃ − ãb), n3(t) = aã − bb̃. (A.4)

From here, setting n(t) = (sin α cos β, sin α sin β, cos α), we obtain

ab̃ = sin
α

2
cos

α

2
e−iβ, aã = cos2 α

2
, (A.5)

ãb = sin
α

2
cos

α

2
eiβ, bb̃ = sin2 α

2
. (A.6)

Next, denoting by |ui〉 and |uf 〉 the initial and final states, respectively, we can write the
total phase as follows:

γt = i

2
ln

( 〈ũ(τ )|u(0)〉
〈ũ(0)|u(t)〉

)
= i

2
ln

( 〈ũf |ui〉
〈ũi |uf 〉

)
= i

2
ln

(
ãf ai + b̃f bi

ãiaf + b̃ibf

)
. (A.7)

Then, applying (A.5) and (A.6), we obtain

γt = i

2
ln

(
cot(αf /2) cot(αi/2) + ei(βi−βf )

cot(αf /2) cot(αi/2) + ei(βf −βi)

)
+

i

2
ln

(
ai ãf

af ãi

)
. (A.8)

This yields

γt = arctan

(
sin(βf − βi)

cot(αf /2) cot(αi/2) + cos(βf − βi)

)
+

i

2

∫ τ

0

(
dã

ã
− da

a

)
. (A.9)

Since the dynamical phase

γd = −i
∫ τ

0
〈ũ(t)| d

dt
|u(t)〉 dt = −i

∫ τ

0
(ãȧ + b̃ḃ) dt, (A.10)

we obtain

γ = γt − γd = arctan

(
sin(βf − βi)

cot(αf /2) cot(αi/2) + cos(βf − βi)

)
+ i

∫ τ

0

(
(ãȧ + b̃ḃ) +

1

2

( ˙̃a

ã
− ȧ

a

))
dt. (A.11)

Using the relations (A.4)–(A.6), we find

(1 − cos α)β̇ = n1ṅ2 − n2ṅ1

1 + n3
= −2i

(
(ãȧ + b̃ḃ) +

1

2

( ˙̃a

ã
− ȧ

a

))
. (A.12)
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Then, inserting this result into (A.11), we obtain

γ (τ) = −1

2

∫ τ

0

n1ṅ2 − n2ṅ1

1 + n3
dt + arctan

(
sin(βf − βi)

cot(αf /2) cot(αi/2) + cos(βf − βi)

)
. (A.13)

�

Corollary. The geometric phase can be calculated by the following integral

γ (τ) = −1

2

∫ τ

0
(1 − cos α)β̇dt + arctan

(
sin(βf − βi)

cot(αf /2) cot(αi/2) + cos(βf − βi)

)
. (A.14)
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